
UsingWebhooks and API toManipulate Data in GWApps
This document will describe an example of using a webhook fromGWApps and API calls back

into GWApps to process data in GWApps. This is a very simple example, as wewanted to focus

on the process of using GWApps webhooks and API Calls withMake. Once you have followed

these steps, you can expand this base to enable integrations with countless external systems or

specific advanced functionality not currently available.

In this exercise, wewill useMake to set the contents of a text area field to a specific value.Wewill

then extend it to read a date from a date field, add 5 days to the date, format it properly andwrite

that to the same text field. If you don’t currently have an account atMake, you can create a free

one. This will allow you to create 2 scenarios (set of steps that accomplish a specific task), one of

which you could use for this example.

A. InGWApps, either create a new application or find an existing ‘test’ application that you can

modify. For this exercise, all you will need is avery simple app, that you have Designer rights

to, with a form and that has a single Text or Text Area field whose value you can update. If you

are using an existing app, either add a new formwith a single Text or Text Area field or identify

an existing form that has an editable Text or Text Area field.

B. LaunchMake, click on Scenarios from the left-side navigation and then ‘+ Create a new

scenario’ from the top right of the Scenarios screen:

Youwill now see your new, empty scenario. Follow the steps below to configure it, and GW

Apps, to make the webhook and API calls that will update your GWApps test record.



C. Click on the ‘+’ in themiddle of the starting circle (1).
D. Then type “webhooks’ in the search bar at the bottom of the dialog that appears (2).

E. Then click on the ‘Webhooks’ option in the list (3).

F. Select ‘Customwebhook’



G. Click on ‘Add’ to add awebhook.

H. Type in the desired name for this webhook. The name has no functional effect, so just pick a
name that makes sense in the context of this scenario. Then click ‘Save’.

I. Youwill now see the webhook listening for incoming requests.



J. OpenGWApps and go to the Test App youwanted to integrate withMake. Open the Actions

list (Edit App > Actions) and create a new action and set the following values:

a. Action Type:Webhook

b. Action Name: Any suitable name

c. Select From: Select the form that has the data youwant tomanipulate.

d. Webhook URL:We need the value fromMake. See next step for details.

K. Go back toMake, and copy the URL of the webhook you just created there:



L. Go back toGWApps, and paste the webhook URL into theWebhook URL field in the Create

Action DIalog, then click ‘Create’.

M. Youwill now see the created webhook action and you can complete it’s configuration:



The dialog has the following sections:

● Request Details: These settings are already completed.

● Security: Configure as required by the receiving webhook. Options include: None, Basic

Auth, Bearer Token, and JWT. In this example, it can be left as ‘None’.

● Header Details: Configure as required by the receiving webhook. You can add asmany

Key-value pairs as needed. In this example, we do not require any headers.

● Response Body: Defines what information will be sent with the webhook. Details of the

options are discussed below.

● Response Details: These settings can usually be left as-is, unless you have a specific

situation that would need them to change.

The Request Body section has three options: Full Record, Select FIelds and Advanced:

● Full Record - All data related to the record will be sent as the webhook body.

● Partial Record - Selecting this option will display the ‘Select fields to include’ field which is

a multi-select drop-downwhich will allow you to select the specific data items youwanted

sent as the webhook body. See example below:

● Advanced - Selecting this option will display the ‘Custom JSONBody’ field. Enter the

desired JSON body content. See example below:

Select ‘Partial Record’ for the Request Body, and then select ‘Status’ and your Text or Text Area

field. (‘Text Area’ is the name of the field in our example form.)



N. Now configure a workflow action button to trigger this webhook. (The ‘TestWebhook’ option

in the actions list is not a suitable way to test this webhook as we need it to send data from a

valid record as well.) The easiest way is just to create a temporary “TestWebhooK’ action

button that can be clickedwhile viewing or editing a test record.

O. Weneed to trigger the webhook so thatMake can receive a sample data body and parse it.

This is a two step process. First we need to ensure the webhook inMake is listening, and then

we need to trigger the webhook action in GWApps to send the data.

Go back toMake, and click on ‘Redetermine data structure’

The dialog will now show amessage letting you know it is now listening for the data, along

with a ‘Stop’ button in case youwanted to stop the webhook listening, for example if you

realized youweren’t quite ready to test after all:



P. Go back toGWApps, and open a record from the appropriate form that is at the workflow

stage where you added the ‘TestWebhook’ workflow action button. Click on ‘TestWebhook’.

The screenwill refresh but nomessage or other indication will display to confirm it was

successfully triggered.

Q. Go back toMake, and you should see amessenger that the webhook successfully acquired
the test data. Depending on how quickly you switch between the browser tabs and on system

load, it might take a few seconds to display after you are back atMake.

We now have a working webhook. Next, we need to create an HTTP Request to parse the data

received by the webhook, authenticate with GWApps and receive an authentication token. After

that, wewill create a second one to post data back to GWApps via the GWApps API.



R. Click on the crescent shape to the right of the ‘Webhooks’ module circle:

The crescent will change into an ‘+ Add another module’ option. Click on ‘+ Add another

module’.

S. Type “HTTP” in to the search field at the bottom of themodule selection dialog (1), then click

onHTTP at the top of the list (2):



The dialog will change to display the HTTP request options. Select ‘Make a request’:

T. Youwill see the HTTP Request configuration dialog:



Parameter Value

URL https://api.gwapps.com/v1/token

Method POST

Body type Raw

Content type JSON (application/json)

Request Content
(Type as a single line of text)

{"key": " - API Key of the app - ", "email": " - email address - ",
"customerId": " - Your Customer ID - "}

Parse Response Yes

As shown above, youwill need three parameters that are specific to your app, you as a GW

Apps client and to the user whose IDwill bemaking the request. Belowwe explain how to

acquire these values:

- API Key of the app -

You need to create an API key for use with thisMake exercise. It is possible to create an API

Keywith full access to everything in an app, and then use that in multiple scenarios. However,

that API key would have significant access to your app and data. Instead, it is recommended to

make specific, tightly controlled API keys for each scenario so that if a key is compromised it

will limit the security exposure. Detailed help on creating API Keys is covered in the Security -

API Key Configuration support site article. Here wewill only cover the details required for

this exercise.

Go back toGWApps, and go to the Test App. Open the API Keys section (Edit App > Security
> API Keys) and create a newAPI Key (+ Create API Key at the top-left of themain area, give

it a suitable name and click on ‘Create’:

https://support.gwapps.com/knowledge-base/security-api-key-configuration/
https://support.gwapps.com/knowledge-base/security-api-key-configuration/


Generated API Key Copy this key and save it in a secure place. Youwill not be able to see
this key again once this form is saved.

Security Details Choose ‘All Domain Users’ or ‘Specific Users’. (For security reasons, it
is strongly recommended to use specific users.) For ‘Specific Users’
select the desired users in the field to the right.

For this exercise, use ‘Specific Users’ and add the username for the
user you are planning to use in the ‘email’ parameter in the API call.

Access Details Each of the forms in the application will be listed, and they will all
have all access scopes selected. For security reasons, it is strongly
recommended to remove any forms not related to this specific
scenario, and to also deselect any scopes not required by this
scenario.

For this exercise, make sure the formwith the text/text area field is
listed and leave all the scopes selected.

Double check you have the API key copied to the clipboard or saved somewhere, then click

‘Save’.



Now that you have an API Key, you can edit it or regenerate the key value by clicking on the

three-dot menu at the end of the row for the API key, Also here is the API Reference. This

provides detailed examples of API calls and also provides access to your Customer ID and the

form’s ID (assuming the key is only scoped to one form).

- email address -

Simply add the email address of whichever user youwant to access GWApps in the API call.

Make sure the user has sufficient permissions on the required records at the workflow stage

theymight be at, and if required, are named in the API key.

- Your Customer ID -

Select the API Reference from the three-dot menu, and then click on ‘Authentication” in the

left navigation. Your specific Customer IDwill be displayed in the two locations circled in red

below.



U. Go back toMake, and complete the Request Content, using the API Key and Customer ID
values you just created/looked up. Do not use the values shown below, these are just

examples. Use the values for your API Key, customer id and user email.

{
"key": "MuvUzC9ppM-eSm-KJyahjMmz4IxzfGPo9j6Ga0r",
"email": "richard.knight@gwapps.com",
"customerId": "clnt_z1f47"

}

The completed HTTP Request should look similar to the following (with different key, email

and customerid values):

Click on ‘OK’ to save the configuration.



V. Weneed to create another HTTP Request to use the API to update the record in GWApps

with the new text value. Repeat step S to create a secondHTTP Request. The configuration

settings for this secondHTTP Request are shown below:

Parameter Value

URL https://api.gwapps.com/v1/forms/<form_id>/records/<record_id>

Method PUT

Headers > Name: Authorization
> Value: <token_type> <access_token>
Note:Make sure you have the single space character between the two values.

Body type Raw

Content type JSON (application/json)

Request Content {"<field_shortcode>": "<text value>", "stage": "<webhook_stage>"}

Parse Response Yes

URL

To get the <form_id>, edit the desired form. The <form_id> is part of the current page URL in

the browser. The URLwill have the following format:

https://app.gwapps.com/<app_id>/designer/forms/<form_id>/design

A specific example:
https://app.gwapps.com/5d72ee95fabe1f0371f19455/designer/forms/649a8d9557d9e7fed520f82d/design

Copy the <form_id> and add it to the URL string. For themoment youwill not know the

<record_id> or the <token-type>, <access_token> or some of the values for the Request

Content field. That is OK for now:We need to do this in steps not all at once.Wewill need to

run the webhook one time so that the first HTTP call can parse those values out for us, so that

we can then use them in the secondHTTP request. So for now, literally leave them as

“<record_id>”, “<access_token>” and so on. This doesmean the update request will fail, but

that is OK as we don’t even expect it to work yet.



W. Click on the ‘RunOnce’ button: Youwill see the webhookmodule show it is waiting and an

orange ‘Stop’ button at the bottom:

Now go back toGWApps, open the Test App, then open a suitable test record and click on the
workflow button that triggers the webhook. Then go back toMake and you should see the
screen update to show that it has successfully run the scenario and parsed the data returned

by GWApps. Note green labels for the threemodules and the short list of log entries showing

it ran.

X. Nowwe can check that the parts that could run properly did run, and update the final HTTP

request to use the data values coming from thewebhook and the first HTTP request.



If you hover over any of the bubbles above and right of themodules, the bubble will change to

showing a spyglass. Clicking on it will return the log details for that module in the last run of

the scenario.

As you can see, the output includes a Status code of ‘201’, whichmeans it ranOK, andwe have

the expected access_token being returned. If you have a Status code of anything but ‘201’,

please carefully check the configuration of the first HTTP request, fix anymistakes, and run it

again.



Now, click on themodule for the secondHTTP request.We can now finish it’s configuration.

<record_id>
When you click in any of the configuration fields, such as URL or Request content, you get the

same helper dialog box appear, but now it has useful values in it. In the example below you can

see that the webhooks section (2 - this number is simply the numeric ID of themodule, it is

the same number that displays below themodules when you are looking at the whole

scenario) has an ‘_id’ value available. This is the value for the <record_id> that we need. So,

click into the URL field, delete the ‘<record_id>’ dummy text that you had, and click on the ‘_id’

in the dialog. Youwill now see a red rectangle with ‘2._id’ in it at the end of the URL string. (the

“2” is just the ID for the webhookmodule, as mentioned above.) Nowwhen the secondHTTP

request is run, the value of the <record_id> will be spliced into the URL before it is actually

called.



<token_type> <access_token>
Weneed to do the same to the value of the Authorization header. Clear the text in the value

field, and select ‘token_type’ from the blue HTTP request section of the dialog, add a single

space and then select ‘access_token’ from the blue HTTP request section of the dialog.

Note:Make sure you have the single space character between the two values.



Request Content

Finally, we need to complete the Request Content. At themoment yours should have the

following value:

{"<field_shortcode>": "<text value>", "stage": "<webhook_stage>"}

Delete ‘<field_shortcode>’ from the Request content field (A), making sure to keep the double

quotes that were around it, and thenwith the cursor between the double quotes type in the

shortcode of the text field on your form.

Delete ‘<text_value>’ from the Request content field (B), making sure to keep the double

quotes that were around it, and thenwith the cursor between the double quotes type in the

text youwould like the API to put in the field: In this example “CAT”.

Delete ‘<webhook_stage>’ from the Request content field, making sure to keep the double

quotes that were around it, and thenwith the cursor between the double quotes, select ‘code’

from under ‘stage’ in the redWebhooks section of the dialog.



You should now see something like the following:

Y. You should now be able to successfully run the webhook and have the value updated in the

record when it is complete. Click on ‘RunOnce’ and then go back toGWApps, open the Test
App and a suitable test record, and click on the workflow button that triggers the webhook.

Then go back toMake, where you should see the screen update to show that it has

successfully run the scenario. Check the logs for both of the HTTP requests, by clicking on the

bubble above and right of themodule, and check both of them have a ‘201’ status code. If they

did, then go back to your test record in GWApps and see if the field has been updated to the

value you specified in the secondHTTP request.

If not, carefully check the configuration of the failing module and try again.



Part 2:MakeDataManipulation Functions

The dialog box that shows the workflow stage code (2. stage: code) and access token (2._id), has

several tabs at the top. These give you access to functions for handling generic actions, math,

text, date/times and arrays. These can allow you to do things like add a piece of text before or

after the current text in a field, or add three days to the date stored in a field. The documentation

inMake can help with using thesemore advanced features, andmany others we have not

covered in this document.

As an example, the steps below show how you can use the date functions inMake to read a date

field, add 5 days to the date value, and add that into the text in the Text or Text Area field. Youwill

need to add a Date field to the form you are using for this exercise. In our form, the field

shortcode for the date field was “date_field1”.

Youwill need to go back and edit your webhook Action in GWApps. Youwill need to update the

‘Select fields to include’ field from the Request Body section to include your new date field.

Youwill then need to repeat steps O, P andQ to allow theWebhookmodule inMake to parse the

new date field from the incoming request. Youwill now be able to access that date field in the

secondHTTP Request.Wewill update the Request content to look like this:

Entering the new date formula is a little fiddly the first time, but it is easy to get the hang of how

to build them. I will step through building the formula in detail:

● Delete the current text value within the double quotes: ‘CAT’, unless you chose to use

different text while doing themain exercise.



● Within the double quotes add ‘The date in 5 days will be ‘. (Do include the space after ‘be’)

● Make sure your cursor is still after the ‘be ‘ and just before the closing double quote. In the

dialog box, select the 5th tab at the topwith the calendar icon (A). Then click on the ‘addDate’

function (B).

The Request content should now look like this:

● Place your cursor in the white gap between the gray ‘addDays(‘ and the gray ‘;’ (C). This is the

space for the first parameter of the addDays function.



● In the dialog box, select the 1st tab at the topwith the star icon (D). Then click on the

‘date_field1’ field from theWebhooks section (E).

● Place your cursor in the white gap between the gray ‘;’ and the gray ‘)’ (F). This is the space for

the second parameter of the addDays function.

● Type in ‘5’.

● Now save and run the webhook again. (Save the scenario, click on ‘Run once’, then go back to

GWApps and open your test record, make sure a date value is present in the date field and
click on the webhook action button. Go back toMake and check that the scenario ran
successfully. If it did go back toGWApps and refresh your browser so that the screen is
updated to show the change in value. You should see something like the following:

● The date is being displayedwith all date-time data elements and in the UTC+0/GMT time

zone. If youwould like to have the date formattedmore neatly, and displayed in a specific time

zone, you can add the formatDate function to achieve that. Place your cursor immediately

before the ‘addDays(‘ function opening, and select ‘formatDate’ from the 5th tab of the dialog.

Now copy the whole of the current addDays function ‘addDays(2.date_field1; 5)’ and paste it



into the space for the first parameter of the new formatDate function. Type ‘MM/DD/YY’ into

the space for the second parameter. Make only shows the first two parameters initially, but

we need to use the optional third parameter to set our desired time zone. After the ‘/YY’ type

a semicolon ‘;’ which should turn gray once you have typed it. Now add ‘America/Los_Angeles’,

or another valid time zone value, into the newly created space for the third parameter. The

final Request content should look like this:

● Now save and run the webhook again. (Save the scenario, click on ‘Run once’, then go back to

GWApps and open your test record, make sure a date value is present in the date field and
click on the webhook action button. Go back toMake and check that the scenario ran
successfully. If it did go back toGWApps and refresh your browser so that the screen is
updated to show the change in value. You should see something like the following:

Webhook / API Use Case Ideas

This simple example was just to get you used to the process of usingMake to interact with GW

Apps via webhooks and API calls. Now that you have an understanding of the process, you can

easily extend this base to domore complex things with GWApps andMake. Here are a few

examples our customers have implemented or discussed:

● Integrate GWApps and Google Calendar so that events created in a customGWApps event

management app can be automatically created in Google Calendar. Updates to the event

record can also update the Google Calendar entry automatically.

● Implement complexmathematical calculations not currently supported in GWApps, both for

numbers and date/time values. For example you could do complex financial or technical

calculations.

● Create Slack posts automatically when a record gets to a specific stage in a workflow. For

example, in a Product FeatureManagement app you could post to the slackmarketing

channel that the new feature was approved and allow them to start thinking of sales and

marketing avenues related to this new feature. (You could also post messages to Facebook,

Google Chat andmany other platforms.)


